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A numerical  calculation is made of the cur rent -vol tage  charac te r i s t i c  of a gas gap ionized by an ex-  
ternal  source in the case of i o n - i o n  conductivity. The resul ts  obtained are compared  with known approxi-  
mate analytic solutions.  The method of numer ica l  integration of the set of equations is discussed.  

The cur ren t -vo l tage  charac te r i s t i c  of a gas ionized by an external  source is calculated in [1,2], both 
allowing for and neglecting space charge for an a rb i t r a ry  geomet ry  of e lec t r ic  field. The attempts to ob- 
tain an exact  analytic solution when space charge is taken into account run into considerable mathematical  
difficulties, and the authors accordingly r e s t r i c t ed  the discussion to two limiting cases :  Ohm's law obeyed 
(voltage V --* 0); a lmost  complete collection of ions (V ~ ~ ) .  The solutions obtained are used in [2] to de-  
rive an approximate formula  for the conduction cur ren t  at a rb i t r a ry  voltages.  The method used to ex-  
trapolate the cur ren t -vo l tage  charac te r i s t i c  to intermediate voitages is not, however,  unambiguous, and 
the accuracy  of the approximate formula  obtained in [2] thus stands in need of additional ref inement .  In 
the work repor ted  in the present  paper a digital computer  was used to obtain a numer ica l  solution to the 
appropriate set  of equations, and the solution was used to determine the cur ren t -vo l tage  charac te r i s t i c  for 
values of the collection efficiency f In the range 0.18 < f < 1. As shown in [2], the set  of differential 
equations in which allowance is made for space charge always has the same form for any sys tem of e lec -  
t rodes with uniformly distr ibuted surface charge (in par t icular ,  for planar,  cyl indrical ,  and spherical  
geometr ies) .  Accordingly,  in the present  paper for the sake of s implici ty the cur rent -vol tage  c h a r a c t e r -  
istic will be calculated and the computational procedure  discussed on the example of a planar geomet ry .  

The initial set  of equations, allowIng for the creat ion and recombination of positive and negative ions, 
has the following dimensionless  form.  

dxe _ _ 4ge (] - -  (t -~ ~t) l), dxelI _ t -~ ~ "  1 (I --/) (1) 

( v  "+) K+ r_ i =.---~ J x= ~ ~ = "-ifS-_ E =  ~ E ,  I ~ eqd ' eqd ' e K _  ' 

Here e is the dimensionless  e lect r ic  field; I is the dimensionless cu r ren t  of negative ions; f is the 
collection efficiency; k and # are the dimensionless  pa ramete r s  of the problem; q is the intensity of 
formation of ions by the external  source;  J is the total cur ren t ;  c~ is the ionic recombination coefficient;  x 
is the dimensionless  coordinate,  0 <- x -< 1 (x = 0 is the cathode); and K+ and K_ are the mobilit ies of posi-  
tive and negative ions, respect ive ly .  

Set (1) is solved subject  to the following boundary conditions: 

I (0) = 0, ; (t) = I (2) 

Set (1) together with boundary conditions (2) consti tutes a boundary problem for a se t  of ordinary  dif- 
ferential  equations.  As the boundary conditions are p resc r ibed  at two points we require ,  in o rde r  to 
numer ica l ly  integrate the set, to p rescr ibe  at the initial point x = 0 the miss ing boundary condition for the 
function e (x). For  each tes t  value of e (0) the se t  is solved, by the Runge -Ku t t a  method, for example, and 
the value of the function I(x) obtained at the other end of the segment  is compared  with the p resc r ibed  
boundary condition. The p rocesses  are repeated until ]I(1) - f l  < 6 f ,  where 5 is a previously given small  
number .  
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In the case under investigation this sor t  of ranging method r e -  
quires a large amount of machine t ime. This comes about because the 
solution is very  sensitive to smal l  changes of e (0), and ~ (0) must  ac-  
cordingly be sought with quite a high degree of accuracy.  If this is not 
done, the solution enters a region not corresponding to the physical con-  
tent of the problem.  A considerable simplification is achieved by r e -  
ducing the two-point boundary problem (1), (2) to a Cauchy problem. 
This technique has been used with success  in the numerica l  solution of 
various boundary problems in hydrodynamics [3]. 

We t rans form set (1), (2) to an initial-value problem by means of 
a s ing le -paramete r  t ransformat ion of the form 

e = A='el, x = Aa~xl, I = A=~I1, f = A : %  (3) 

where A is the pa ramete r  of the t ransformat ion and a l ,  a~, a 3 are con- 
stants which must be determined.  I n t h e  new variables  set (1) acquires 
the form 

A~,_~3 de1 _ _ A a ~ - ~ ,  4 ~ _ [ / l _ ( l + ~ ) i t ]  
dzl 81 (4) 

A~2-o~3 d h  --  t - -  A 2(~-a') ~ I1 (]1 - -  I~) 
dxt 8~1 

The requi rement  that set (1) be invariant  under the above group 
of t ransformat ions  leads to the following equalities for a i ,  ~2, and a3: 
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This implies that el  = c~2 = ~a. Set (1) then assumes the form 

ds~ 47r 
- -  - -  - - [ h - - ( t + t ~ ) 1 1 1 ,  
dXl gt 

d i l  _ t _  ~,I1 (ft--11) a t  x l = 0 ,  1 1 ( 0 ) = 0  ( 5 )  
dXl 821 

In order  to obtain the missing condition we set, for example, 
a (0) = A, when Aatel(0)  = A. This boundary condition does not depend 
on al  or A if a i  = 1. The boundary conditions for set (5) are finally 
written 

h (0) = 0,  81 (0) = t ( 6 )  

u 

d 
Set (5) together with conditions (6) thus constitutes the equivalent 

Cauchy problem. The value of the pa ramete r  ~ can be found from the 
boundary condition at the other end of the segment,  which in the new 
variables has the form 

It(x1 = A  -1) = h  (7) 

The pa ramete r  A is determined by numer ica l  solution of the Cauchy problem (5), (6) (for a fixed f l )  
allowing for condition (7). Knowing A, we find with the aid of (3) the solution of the initial problem for 

] = A I ,  (8) 

By varying f i  it is possible,  in principle,  to obtain the solution for any f .  In other words,  reducing 
the initial problem to a Cauchy problem in the present  case is justified when one needs to obtain a solu- 
tion for f varying in a cer tain range.  Thus, if in the ranging method a large number of tes t  variants  must  
be computed in order  to obtain the solution for each fixed value of f ,  then now each variant  gives the solu- 
tion of the initial problem for f defined by equality (8). 

An analysis of set  (5) shows that a solution satisfying condition (7) cannot be found for all f l .  A c e r -  
tain boundary value f l *  exists such that for f i  > f l *  there is no solution of the Cauchy problem which 
sat isf ies condition (7). 
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On the other hand, for f l  < fl* a solution can be obtained for  any values of the c o e f f i c i e n t f  however  
smal l ,  although in this case  the p a r a m e t e r  f t  mus t  be p r e s c r i b e d  with suff icient ly high accuracy .  For  
example ,  in o rde r  to obtain the solution of the init ial  p rob lem for f ~ 0.3, the p a r a m e t e r  f i  mus t  be p r e -  
sc r ibed  c o r r e c t  to the seventh dec imal  place .  This so r t  of computat ional  p rocedure  can be effected on the 
Minsk-22 digital  compute r ,  for  example ,  using the s tandard  R u n g e - K u t t a  p r o g r a m .  If a numer i ca l  so lu-  
tion is requi red  for  f < 0.3 one can go over  to the R u n g e - K u t t a  a lgor i thm with doubled accuracy  (for the 
Minsk-22 this means  that  one can work  with numbers  having 16 signif icant  f igures) .  

The r e su l t s  of a n u m e r i c a l  in tegrat ion of se t  {1) are  p resen ted  in Figs .  1 and 2. F igure  1 shows plots 
of the e lec t r ic  field v e r s u s  the coordinate  x for var ious  values of the col lect ion eff ic iency f (~ = 0.65, 

= 4.33). Curves  1-6 c o r r e s p o n d  r e spec t ive ly  to f = 0.952, 0.750, 0.550, 0.405, 0.303, and 0.18]. It  can 
be seen that for f = 0.181, for  example ,  the curve  can be approximated  by a broken line varying according 
to a l inear  law nea r  the e l ec t rodes .  Integrat ing the functions e (x) for  the var ious  f gives the c u r r e n t -  
voltage c h a r a c t e r i s t i c  in the fo rm of the dependence of the collect ion eff ic iency on the d imens ionless  vo l t -  
age 

u = ! V~/eq  
d"- 

Figure  2 shows the current -v01tage  c h a r a c t e r i s t i c  calcula ted in this manner  (curve 1) and also,  for 
compar i son ,  the cu r r en t -vo l t age  c h a r a c t e r i s t i c s  obtained using Boag ' s  fo rmula  [4] (curve 2) 

il  = 2[t + (1 + 2~,/3u2)'/2] -1 

and the approximate  fo rmula  of Vol ' f  and Polikanov [2] (curve 3) 

(9) 

f =  2 ~  - [ - i + l / t + 4 ~ B U - 2  ] \ ~ , ~  -'i7) (10) 

(cor rec t ing  for the mispr in t  in fo rmula  (24) of [2]). It can be seen  f rom Fig.  2 that,  at any ra te  for ~ = 
0.65 and ~ = 4.33 Boag ' s  c h a r a c t e r i s t i c  (9) pa s se s  above the ca lcula ted  curve ,  the m a x i m u m  re la t ive  dev ia -  
tion (relat ive to the ca lcula ted  curve) for the in terval  0.181 < f < 1 being about 30%. F o r m u l a  (10), on the 
other  hand, g ives  r e su l t s  that  are  too low, although it r epea t s  the shape of the ca lcula ted  curve  r a th e r  be t -  
t e r  in the given range  for  f (maximum deviation re la t ive  to the calcula ted curve  about 24~).  

In the case  of e l e c t r o n - i o n  Conductivity, it was ef fec t ive ly  not poss ible  to obtain a solution for  f 
s ignif icant ly  different  f rom unity upon n u m e r i c a l  in tegra t ionwi th  the doubled-accuracy  p r o g r a m .  
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